Transfusion Services in Tropical Africa: Challenges and Prospects from the Nigerian Perspective
DOI:
https://doi.org/10.60787/Keywords:
prospects, challenges, Nigeria, tropical Africa, blood transfusion serviceAbstract
Background: The decision to establish voluntary donor based National Blood Transfusion Services (NBTS) in all member states of the World Health Assembly (WHA) was conceived in 1975 as documented in resolution number 28.72 of the WHA. Since the signing and adoption of the resolution, not very much has been done in tropical African countries, including Nigeria. The first NBTS center in
Nigeria was set up in the Federal Capital, Abuja, in 2004, which was followed by the establishment of 6 zonal centres across the
country. Nonetheless, the NBTS is still unable to provide adequate amount of safe blood and blood products for clinical use in
Nigeria. Consequently, the responsibilities of donor recruitment, selection, screening, blood collection, processing, storage,
compatibility testing and haemovigilance are essentially relegated to individual hospital blood banks, which are characterized by numerous challenges. This review presents a sequential ‘stage-bystage’, (from donor recruitment to compatibility tests) overview of current challenges vis-à-vis efficacy, safety, prospects and solutions within the context of tropical African transfusion medicine from
the Nigerian perspectives.
Materials and Methods: Literature search was conducted using relevant search terms: ‘Donor Recruitment, Categories and Selection, Pre-donation screening, Blood collection, Donor Reaction, Blood Processing, Storage, Transfusion, Tropical Transfusion, Nigeria’ in various combinations in Pub Med, Google Scholar, Medline, and other search engines.
Results: Several challenges vis-à-vis effectiveness and efficiency of transfusion service in tropical Africa and Nigeria were found at
every stage (from donor recruitment to compatibility tests) of the practice of tropical transfusion medicine in Nigeria. The prospects and possible solutions to the identified challenges are presented in a sequential stage-by-stage format in the discussion section.
Conclusion and Recommendation: Blood transfusion services in tropical Africa, as typified by the Nigerian setting, are largely hospital-based and are characterised by a myriad of challenges due to combined effects of systemic inadequacies, operational shortfalls, technical deficiencies, endemic transfusion transmissible infections and high prevalence of genetic red cell disorders. These challenges have adverse impact on virtually every stage of tropical transfusion service from donor recruitment up to compatibility testing. Urgent revitalization of centralized national blood transfusion services in Nigeria and across tropical Africa, is hereby recommended.
Downloads
References
1. World Health Organisation. 28th World Health Assembly, Resolution No. 28.72, Geneva, 13-30 May, 1975.
2. Nigerian National Blood Policy. National Blood Transfusion Service, Federal Ministry of Health, Abuja. 2006: 1-16.
3. Field SP, Allain JP: Transfusion in subSaharan Africa: Does a Western model fit? J Clin Pathol. 2007; 60: 1073-1075. DOI:
10.1136/jcp.2006.043505.
4. Hafez R. Nigeria health financing system assessment. World Bank Report. 2018. DOI:10.1596/30174.
5. Aneke JC, Okocha CE. Blood transfusion safety; current status and challenges in Nigeria. Asian J Transfus Sci. 2017; 11: 1-5. DOI:
10.4103/0973-6247.200781.
6. World Health Organization. Resolutions, Recommendations and Decisions. League of Red Cross and Red Crescent Societies.
Geneva, 1984.
7. Ahmed SG, Ibrahim UA, Hassan AW. Adequacy and pattern of blood donations in northeast Nigeria: the implications for blood
safety. Ann Trop Med Parasitol. 2007; 101: 725- 731. DOI: 10.1179/136485907X241442.
8. Ahmed SG, Gamas MG, Kagu BM. Declining frequency of blood donation among elites in Maiduguri, Nigeria. Afr J Med Med Sci. 2006; 35:
359-363.
9. Eastland T. Monetary blood donation incentives and the risk of transfusion transmitted infection. Transfusion. 1998; 38: 874-882. DOI:
10.1046/j.1537-2995.1998.38998409009.x
10. Ahmed SG, Kagu MB, Abjah UAM. Haematological parameters of blood donors in northeast Nigeria and implication on quality of
blood products. Afr Sanguine. 2010; 13:5-8.
11. Benedict N, Augustina AO, Nosakhare BG. Blood donation in Nigeria: Standard of the
donated blood. J Lab Physicians. 2012; 4: 94-97. DOI: 10.4103/0974-2727
12. Ahmed SG. A Strategic Approach to the Problems of Providing RhD Negative Blood in Geographic Areas with Low RhD Negativity: A
Nigerian Perspective. Transfus Med Rev. 2010; 24: 140-146. DOI: 10.1016/j.tmrv.2009.11.005.
13. Malladi SV, Paul R, Chandra N, Rao NM, Raju SY. TA-GVHD, a fatal complication following blood transfusion from a first-degree
relative. J Obstet Gynecol India. 2013; 63: 344- 346. DOI: 10.1007/s13224-012-0189-x.
14. Ahmed SG, Kyari O, Ibrahim UA. Pattern of requests for inter-spousal donation and transfusion in University of Maiduguri Teaching
Hospital. Niger J Surg Res. 2003; 5: 23-26.
15. Erhabor O, Isaac Z, Abdulrahaman Y, Ndakotsu M, Ikhuenbor DB, Aghedo F, et al. Female gender participation in the blood
donation process in resource poor settings: case study of Sokoto in north western Nigeria. J Blood Disord Transfus. 2013; 5: 176.
DOI:10.4172/2155-9864.1000176.
16. Ahmed SG. Impact of seasonal agriculture on blood donations in Kano, northwest Nigeria and its implications on health care. Ann Trop
Pathol. 2013; 4: 77-82.
17. Okoroiwu HU, Okafor IM, Asemota EA, Okpokam DC. Seroprevalence of transfusiontransmissible infections (HBV, HCV, syphilis and HIV) among prospective blood donors in a tertiary health care facility in Calabar, Nigeria; an eleven years evaluation. BMC Public Health.
2018; 18: 645. DOI:10.1186/s12889-018-5555-x.
18. Kagu MB, Ahmed SG, Bashir MA, Malah MB, Usoro A, Gimba I, et al. Deferral pattern of voluntary blood donors at the national blood
transfusion service, northeast zonal centre, Maiduguri, Nigeria. Afr J Med Med Sci. 2010; 39: 119-125.
19. Ahmed SG, Kagu MB. Morphological classification of anaemia among first-time blood donors in northwest Nigeria and the implication
of empirical haematinics therapy. Int J Biomed Health Sci. 2011; 7: 125-129.
20. Ahmed SG, Uraka AJ. Role of intestinal parasites in donor anaemia and deferral in northwest Nigeria. Afr Sanguine. 2010; 13: 8-10.
21. World Health Organisation. Blood donor selection: guidelines on assessing donor suitability for blood donation. Geneva 2012.
https://apps.who.int/iris/bitstream/handle/10665/76724/9789241548519_eng.pdf. [Accessed: June 4, 2022].
22. Ugwu AO, Madu AJ, Efobi CC, Ibegbulam OG. Pattern of blood donation and characteristics of blood donors in Enugu, Southeast Nigeria. Niger J Clin Pract. 2018; 21: 1438-43.
23. National Population Commission. Nigeria Demographic and Health Survey; 2018. Abuja, Nigeria. Available at: https://www.dhsprogram.com. [Accessed: June 4, 2022].
24. Anyanwu-Yeiya CC, Sonubi O, Kotila TR. Targeting females as voluntary non remunerated donors in developing nations. J Blood Disord
Transfus. 2015; S4: S4-002. DOI:10.4172/2155- 9864.1000S4-002.
25. Salawu L, Murainah HA. Pre-donation screening of intending blood donors for antibodies to infectious agents in a Nigerian tertiary health institution: a pilot study. Afr J Med Med Sci. 2006; 35: 453-456.
26. Adegoke AO, Akanni OE. Survival of Treponema pallidum in banked blood for prevention of Syphilis transmission. N Am J Med
Sci. 2011;3: 329-332. DOI:10.4297/najms.2011.3329.
27. Ahmed SG, Kagu MB, Ibrahim UA. Pattern of blood products transfusions and reactions among multi-transfused haemophiliacs in
Nigeria: implications on haemophilia care in low resource tropical settings. Sudan Med J. 2018; 54: 29-38. DOI: 10.12816/0046389
28. Bhutta ZA, Sommerfeld J, Lassi ZS, Salam RA, Das JK. Global burden, distribution, and interventions for infectious diseases of poverty.
Infect Dis Poverty. 2014; 3: 21. DOI: 10.1186/2049-9957-3-21.
29. Nwankwo E, Momodu I, Umar I, Musa B, Adeleke S. Seroprevalence of major bloodborne infections among blood donors in Kano,
Nigeria. Turk J Med. 2012; 42: 337-341. DOI: 10.3906/sag-1009-1176.
30. Okoroiwu HU, Okafor IM, Asemota EA, Okpokam DC. Seroprevalence of transfusiontransmissible infections (HBV, HCV, syphilis and HIV) among prospective blood donors in a tertiary health care facility in Calabar, Nigeria; an eleven years evaluation. BMC Public Health.
2018; 18: 645. DOI: 10.1186/s12889-018-5555- x.
31. Lee CA. Blood borne infections and haemophilia: the worst of times. J Haem Pract. 2015; 2: 5-7. DOI: 10.17225/jhp00049.
32. Bloch EM, Vermeulen M, Murphy E. Blood transfusion safety in Africa: a literature review of infectious disease and organizational
challenges. Transfus Med Rev. 2012; 26: 164- 180 DOI: 10.1016/j.tmrv.2011.07.006.
33. Ahmed SG, Hassan AW. Viral infectivity markers in donor blood: a retrospective study of three donor categories. Niger J Surg Res. 2000;
2: 75-81. DOI: 10.4314/njsr.v212.12189.
34. Keechilot CS, Shenoy V, Kumar A, Biswas L, Vijayrajratnam S, Dinesh K et al. Detection of occult hepatitis B and window period infection
among blood donors by individual donation nucleic acid testing in a tertiary care center in South India. Pathog Global Health. 2016; 110:
287-291. DOI: 10.1080/20477724.2016.1248171.
35. Ibrahim IN, Mamman AI, Balogun MS, Hassan A, Awwalu S, Kusfa IU. Transfusion transmissible HIV infection: how reliable are rapid screening as pre-donation tests? Niger J Haematol. 2017; 1: 28-32.
36. Mehra B, Bhattar S, Bhalla P, Rawat D. Rapid tests versus ELISA for screening of HIV infection: our experience from a voluntary
counselling and testing facility of a tertiary care centre in North India. ISRN AIDS. 2014; 2014: 296840. DOI: 10.1155/2014/296840.
37. Osaro E, Mohammed N, Zama I, Abdulrahman Y, Ikhuenbor BD, Aghedo F et al. Prevalence of p24 antigen among a cohort of HIV antibody negative blood donors in Sokoto, North Western Nigeria-the question of safety of blood transfusion in Nigeria. Pan Afr Med J.
2014; 18. DOi: 10.11604/pamj.2014.18.174.3449.
38. Yang JF, Lin YY, Hsieh MH, Tsai C, Liu S, Yu M et al. Performance characteristics of a combined hepatitis C virus core antigen and
anti–hepatitis C virus antibody test in different patient groups. Kaohsiung J Med Sci. 2011; 27: 258-63. DOI: 10.1016/j.kjms.2010.11.007.
39. Chigurupati P, Murthy KS. Automated nucleic acid amplification testing in blood banks: an additional layer of blood safety. Asian J Transfus
Sci. 2015; 9: 9-11. DOI: 10.4103/0973- 6247.150938.
40. Devine DV, Schubert P. Pathogeninactivation technologies: the advent of pathogen-reduced blood components to reduce blood safety risk. Hematol Oncol Clin. 2016; 30: 609-617. DOI: 10.1016/j.hoc.2016.01.005.
41. Jean Beltran PM, Cristea IM. The life cycle and pathogenesis of human cytomegalovirus infection: lessons from proteomics. Expert Rev
Proteomics. 2014; 11: 697-711. DOI: 10.1586/14789450.2014.971116.
42. Vancíková Z, Dvorák P. Cytomegalovirus infection in immunocompetent and immunocompromised individuals- a review. Current Drug Targets-Immune, Endocrine and Metabolic Disorders. 2001; 1: 179-187. DOI: 10.2174/1568005310101020179.
43. Adane T, Getawa S. Cytomegalovirus seroprevalence among blood donors: a systematic review and meta-analysis. J Int Med Res. 2021; 49: 1-16. DOI: 10.1177/03000605211034656.
44. Gwarzo DH, Gwarzo AK, Ahmed SG. Seroprevalence of cytomegalovirus antibodies among blood donors in Aminu Kano Teaching Hospital, Kano, Nigeria. Niger J Basic Clin Sci. 2017; 14: 8-14. DOI: 10.4103/njbcs.njbcs_47_16.
45. Adler SP, Chandrika T, Lawrence L, Raggett J. Cytomegalovirus infections in neonates acquired by blood transfusions. Pediatr Infect
Dis. 1983; 2: 114-118. doi:10.1097/00006454-198303000-00009.
46. Ziemann M, Hennig H. Prevention of transfusion-transmitted cytomegalovirus infection which is the optimal strategy? Transfus Med Hemother. 2014; 41: 40-44. DOI: 10.1159/000357102.
47. Luban NL, Williams AE, MacDonald MG, Mikesell G, Williams KM, Sacher R. Low incidence of acquired cytomegalovirus infection
in neonates transfused with washed red blood cells. Am J Dis Child. 1987; 141: 416-419. DOI: 10.1001/archpedi.1987.04460040074018.
48. Ahmed SG, Ibrahim UA. Donor blood selection criteria for neonatal red cell transfusion: general and tropical perspectives.
Trop J Health Sci. 2018; 25: 1-10.
49. Aneke JC, Ezeama N, Okocha CE, Onyeyili AN, Ona CE, Ibeh NC, et al. Knowledge, attitude and practice of haemovigilance among
healthcare professionals in a Nigerian Tertiary Hospital. Egypt J Haematol. 2017; 42: 108-116. DOI: 10.4103/ejh.ejh_25_17
50. Faruk JA. Blood transfusion malaria: A literature review. Ann Niger Med. 2016; 10: 49- 57. DOI: 10.4103/0331-3131.206210..
51. Ahmed S.G, Ibrahim UA, Ibrahim G. Prevalence and clinical significance of malaria parasitemia in donor blood in Maiduguri, Nigeria. Niger J Parasitol. 2001; 22: 29-34. DOI:
10.4314/njpar.v22i1.37755.
52. Ezeonu C.M, Adabara NU, Garba SA, Kuta F, Ewa E, Oloruntoba PO et al. The risk of transfusion transmitted malaria and the need for malaria screening of blood donors in Abuja,
Nigeria. Afr J Clin Exper Microbiol. 2019; 20: 195-201. DOI: 10.4314/ajcem.v20i3.4.
53. Deroost K, Pham T, Opdenakker G, Van den Steen P. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev. 2016; 40: 208-257. DOI:
10.1093/femsre/fuv046.
54. Chattopadhyay R, Majam VF, Kumar S. Survival of Plasmodium falciparum in human blood during refrigeration. Transfusion. 2011; 51: 630–635.
55. World Health Organization. Guidelines on drawing blood: best practices in phlebotomy. Geneva 2010. https://www.ncbi.nlm.nih.gov/books [Accessed: June 4, 2022].
56. Kakaiya R, Aronson CA, Julleis J. Whole blood collection and component processing at blood collection centers. In: Roback JD, (ed). Technical Manual. 17th edition. AABB, Bethesda; 2011. 187–226.
57. Yun SH, Sim EH, Goh RY, Park JI, Han JY. Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int. 2016; 2016: 9060143. DOI: 10.1155/2016/9060143.
58. Naudin C, Burillo E, Blankenberg S, Butler L, Renné T. Factor XII contact activation. Semin Thromb Hemost. 2017; 43: 814-826. DOI: 10.1055/s-0036-1598003.
59. Shastry S, Das S. Root-cause analysis for clot in blood bag. Asian J Transfus Sci. 2016; 10:3-4. DOI: 10.4103/0973-6247.175385.
60. Arora D, Dara RC, Raina V, Rawat G, Tiwari AK. CAPA analysis of clotted red cell unit detected during leukodepletion process: importance of quality check on blood collection monitors. Asian J Transfus Sci. 2015; 9: 217- 218. DOI:10.4103/0973-6247.162732.
61. Hoque A, Afroz T, Biswas DA. Evaluation of blood clot in the blood bag: experience from Bangladesh. J Med Sci Clin Res. 2019; 7: 327- 330. DOI:10.18535/jmscr/v7i6.56.
62. Gupte SC. Automation in blood centres: its impact on blood safety. Asian J Transfus Sci. 2015; 9: S6-S10. DOI: 10.4103/0973- 6247.157016.
63. Roberts DJ, Field S, Delaney M, Bates I. Problems and approaches for blood transfusion in the developing Countries. Hematol Oncol Clin North Am. 2016; 30: 477–495. DOI: 10.1016/j.hoc.2015.11.011.
64. Ibrahim Z, Kani KM, Habib A, Ibrahim UA, Ahmed SG. Clots in blood bags in northwest Nigeria: incidence, correlation with donor ABO blood groups, and implications on blood transfusion in a low resource tropical setting. Trop J Health Sci. 2020; 27: 1-7.
65. Dentali F, Sironi AP, Ageno W, Turato S, Bonfanti C, Frattini F, et al. Non-O blood type is the commonest genetic risk factor for VTE: results from a meta analysis of the literature. Semin Thromb Hemost. 2012; 38: 535-548. DOI: 10.1055/s-0032-1315758.
66. Franchini M, Crestani S, Rossi C, Frattini F, Mengoli C, Giacomini I, et al. O blood group and the risk of major bleeding: a single centre survey. J Thromb Thrombolysis. 2013; 35: 65-
66. DOI: 10.1007/s11239-0783-x.
67. Habib A, Ibrahim Z, Kani KM, Ibrahim UA, Ahmed SG. Sickle cell trait and the risk of clotting in donated blood bags in north west Nigeria: Is this a call for pre-donation hydration?
Afr Sanguine. 2021; 23: 41-48. DOI: 10.4314/asan.v23i1.7.
68. Adelekan DA, Adeodu OO. Anaemia in Nigerian mothers and their children: relative importance of infections and iron deficiency. Afr J Med Med Sci. 1998; 27: 185-187.
69. Ahmed SG, Ibrahim UA, Kagu MB. The burden of HIV and AIDS on blood bank reserve in northeast Nigeria. Trans Roy Soc Trop Med Hyg. 2007; 101: 618-620. DOI: 10.1016/j.trstmh.2006.09.008.
70. Ahmed SG, Bukar AA, Jolayemi B. Hematological indices of sickle cell anaemia patients with pulmonary tuberculosis in northern Nigeria. Mediterr J Hematol lnfect Dis. 2010; 2: e2010014. DOI: 10.4084/mjhid.2010.014.
71. Ahmed SG, Kagu MB, Ibrahim UA. Impact of urinary schistosomiasis on haematological parameters and frequency of vaso-occlusive crisis among patients with sickle cell disease in northern Nigeria. Egypt J Haematol. 2014; 39: 58-63. DOI: 10.4103/1110-1067.139762.
72. Tripette J, Loko G, Samb A, Gogh BD, Sewade E, Seck D, et al. Effects of hydration and dehydration on blood rheology in sickle cell trait carriers during exercise. Am J Physiol Heart Circ Physiol. 2010; 299: H908-H914. DOI: 10.1152/ajpheart.00298.2010.
73. France CR, Ditto B, Wissel ME, France JL, Dickert T, Rader A, et al. Pre-donation hydration and applied muscle tension combine to reduce presyncopal reactions to blood donation. Transfusion. 2010; 50: 1257-1264. DOI: 10.1111/j.1537-2995.2009.02574.x.
74. John CA, Theodora UE, Gloria AN, Chika EA. Adverse reactions to blood donation: A descriptive study of 3520 blood donors in a Nigerian tertiary hospital. Med J DY Patil Univ. 2017; 10: 36-40. DOI: 10.4103/0975- 2870.197894.
75. France CR, Rader A, Carlson B. Donors who react may not come back: analysis of repeat donation as afunction of phlebotomist ratings of vasovagal reactions. Transfus Apher Sci. 2005; 33: 99-106. DOI: 10.1016/j.transci.2005.02.005.
76. Ahmed SG, Ibrahim UA. Haemoglobin-S in sickle cell trait with papillary necrosis. Br J Haematol. 2006; 135: 415-416. DOI:10.1111/j.1365-2141.2006.06318.x.
77. Beard MJ, Cardigan R, Seghatchian J, Krailadsiri P, Williamson LM. Variables determining blockage of WBC-depleting filters by Hb sickle cell trait donations. Transfusion. 2004; 44: 422-30. DOI: 10.1111/j.1537- 2995.2003.00669.x.
78. Stroncek DF, Byrne KM, Noguchi CT, Schechter AN, Leitman SF. Increasing hemoglobin oxygen saturation levels in sickle trait donor whole blood prevents hemoglobin-S polymerization and allows effective white blood cell reduction by filtration. Transfusion. 2004; 44: 1293-1299. DOI: 10.1111/j.0041- 1132.2004.04086.x.
79. Schuetz AN, Hillyer KL, Roback JD, Hillyer CD. Leuko-reduction filtration of blood with sickle cell trait. Transfus Med Rev. 2004; 18: 168-176. DOI: 10.1016/j.tmrv.2004.03.002.
80. Amar KO, Bourdonné O, Bruneau S, Sellami F, Richard P. Assessment of leuco-reduction of sickle cell trait blood: quality of the filtered product. Blood Transfus. 2014; 12: s193-198. DOI: 10.2450/2012.0084-12.
81. Ahmed SG, Hassan AW, Ibrahim UA. The frequency and clinical significance of structural haemoglobin variants in donor blood at university of Maiduguri teaching hospital. Niger J Surg Res. 2000; 2: 127-130. DOI: 10.4314/njsr.v2i3.12199.
82. Garba N, Danladi SB, Abubakar HB, Ahmad SG, Gwarzo MY. Distribution of haemoglobin variants, ABO and Rh blood groups in blood donors attending Aminu Kano Teaching Hospital,
Nigeria. Clin Med J. 2016; 2: 20-24. http://www.aiscience.org/journal/cmj.
83. Bianchi M, Vaglio S, Pupella S, Marano G, Facco G, Liumbruno GM, et al. Leucoreduction of blood components: an effective way to increase blood safety? Blood Transfus. 2016; 14: 214-227. DOI: 10.2450/2015.0154-15.
84. Stroncek DF, Rainer T, Sharon V, Byrne KM, Noguchi CT, Klein HG, et al. Sickle Hb polymerization in RBC components from donors with sickle cell trait prevents effective WBC reduction by filtration. Transfusion. 2002; 42: 1466-1472, DOI: 10.1046/j.1537- 2995.2002.00206.x.
85. Kuypers FA. Hemoglobin-S polymerization and red cell membrane changes. Hematol Oncol Clin. 2014; 28: 155-179. DOI: 10.1016/j.hoc.2013.12.002.
86. Osei-Hwedieh DO, Kanias T, Croix CS, Jessup M, Xiong Z, Sinchar D, et al. Sickle cell trait increases red blood cell storage hemolysis and post-transfusion clearance in mice.
EBioMedicine. 2016; 11: 239-48. DOI: 10.1016/j.ebiom.2016.08.006.
87. Yoshida T, Shevkoplyas SS. Anaerobic storage of red blood cells. Blood Transfus. 2010; 8: 220-236. DOI: 10.2450/2010.0022-10.
88. Burns JM, Yoshida T, Dumont LJ, Yang X, Piety NZ, Shevkoplyas SS. Deterioration of red blood cell mechanical properties is reduced in anaerobic storage. Blood Transfus. 2016; 14:
80-88. DOI: 10.2450/2015.0241-15.
89. Yoshida T, Au Buchon JP, Tryzelaar L, Foster KY, Bitensky MW. Extended storage of red blood cells under anaerobic conditions. Vox Sang. 2007; 92: 22-31. DOI: 10.1111/j.1423-
0410.2006.00860.x.
90. Dumont LJ, Yoshida T, Au Buchon JP. Anaerobic storage of red blood cells in a novel additive solution improves in vivo recovery. Transfusion. 2009; 49: 458-464. DOI: 10.1111/j.1537-2995.2008.02038.x.
91. Merciris P, Hardy-Dessources MD, Giraud F. Deoxygenation of sickle cells stimulates Syk tyrosine kinase and inhibits a membrane tyrosine phosphatase. Blood. 2001; 98: 3121- 3127. DOI: 10.1182/blood.v98.10.3121.
92. Ahmed SG. Anaerobic storage of red blood cells: the need for caution regarding donor red cells with sickle cell trait (letter). Blood Transfus. 2011; 9: 347. DOI: 10.2450/2011.0110-10.
93. Yoshida T, Shevkoplyas SS. Anaerobic storage of red blood cells: the need for caution regarding donor red cells with sickle cell trait (reply). Blood Transfus. 2011; 9: 348. DOI: 10.2450/2011.0033-11.
94. Luzzatto L, Gordon-Smith EC. Inherited haemolytic anaemias. In: Hoffbrand AV, Lewis SM, Tuddenham EGD. (eds). Postgraduate haematology. 9th edition. Arnold, London; 2001. 120-143.
95. Luzzatto L. G6PD deficiency: a polymorphism balanced by heterozygote advantage against malaria. Lancet Haematol. 2015; 2: e400-1. DOI: 10.1016/ S2352- 3026(15)00191-X.
96. Ahmed SG, Ibrahim UA. Prevalence and clinical significance of G6PD deficiency among apparently healthy blood donors in Kano, northwest Nigeria. Orient J Med. 2018; 30: 74- 80.
97. Karafin MS, Richard O. Francis RO. Impact of G6PD status on red cell storage and transfusion outcomes Blood Transfus. 2019; 17: 289-295 DOI: 10.2450/2019.0092-19.
98. Tzounakas VL, Kriebardis AG, Georgatzakou HT. Glucose 6-phosphate dehydrogenase deficient subjects may be better “storers” than donors of red blood cells. Free Radic Biol Med. 2016; 96: 152–165.
99. Francis RO, Jhang JS, Pham HP, Hod EA, Zimring JC, Spitalnik SL. Glucose-6-phosphate dehydrogenase deficiency in transfusion medicine: the unknown risks. Vox Sang. 2013; 105 :271–282. DOI: 10.1111/vox.12068.
100. Rowley M, Milkins C. Laboratory aspects of blood transfusion. In: Lewis SM, Bain BJ, Bates I, (eds). Practical haematology. 10th edition. Churchill Livingstone, London; 2006. 523-554.
101. Kuliya-Gwarzo A, Akanmu AS, Dutse AI. Prevalence of red cell alloantibodies in multitransfused patients with sickle cell anaemia in Northern Nigeria. Africa Sang. 2005; 8: 1-4.
102. Obi EI, Pughikumo CO, Oko-jaja RI. Red blood cell alloimmunization in multi-transfused patients with chronic kidney disease in Port Harcourt, South-South Nigeria. Afri Health Sci. 2018; 18: 979-987. DOI: 10.4314/ahs.v18i4.18
103. Adewoyin AS, Daramola OA, Ogbenna AA, Adeyemo TA. Immune erythrocyte antibodies in adult patients with sickle cell disease and blood donors in Lagos, Nigeria: a comparative study Immunohematol. 2021; 37: 131-137. DOI: 10.21307/immunohematology-2021-020.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Nigerian Journal of Haematology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.